ACS_Energy Letters

관리자

ACS_Energy Letters_Cover Picture


April 9, 2021
Volume 6, Issue 4
Pages 1153-1658


Ultrathin Noncontact-Mode Triboelectric Nanogenerator Triggered by Giant Dielectric Material Adaption


Noncontact-mode-operating triboelectric nanogenerators (TENGs), which directly avoid physical contact, are fascinating self-powered systems aimed at long-life operation and minimizing rubbing friction. As of now, there are still drawbacks such as the electrostatic discharge (ESD) phenomenon on the surface, which results in poor output. Herein, a noncontact TENG (nc-TENG) is designed by using calcium copper titanate (CaCu3Ti4O12) with a giant high permittivity, combined with self-assembled monolayers of 1H,1H,2H,2H-perfluorooctyltrichlorosilane. All the materials constituting the nc-TENG are nanoscale in thickness, and this enables the implementation of a wearable nc-TENG that can be attached to the human body. The ESD phenomenon is prevented by using an ultraflat surface roughness material as an abutting material. In addition, by using a giant dielectric constant material, the charge capability is further improved, and the nc-TENG can be implemented for stable operation with a low power reduction rate, even when operating for a long period of time.





  • Sang A Han
  • Wanchul Seung
  • Jung Ho Kim
  • Sang-Woo Kim

https://pubs.acs.org/toc/aelccp/6/4


Image created by minjeong Kim / Nanosphere